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1. Introduction

An important question in planning the observing system for the GARP

Global Experiment is the horizontal resolution required for satellite-

derived temperatures. Accuracy and resolution requirements for temperature

measurements have been clearly established as ± 1 deg C and 500 km (GARP

Publication 11). It seems unlikely at this time that the satellite derived

temperatures will be this accurate, and suggestions have been made that the

failure to achieve 1 deg C accuracy can be compensated for by increasing the

yield of satellite-derived temperatures. The purpose of this note is to

point out that our ability to do this may be severely .limited by spatial

correlations in the errors of the temperature retrievals.

In order to examine the effect of spatial error correlations on the use-

fulness of observational data, we have carried out a simple numerical

experiment, similar in design to one by Alaka and Elvander (1972a, 1972b).

The significant departures from their experiment are that calculations are

for temperatures rather than winds, that the analysis is considered to be in

terms of deviations from a forecast rather than from some climatological

state and, most important, that the errors in observations are not assumed

to be randomly distributed in space. Systematic errors in the satellite

temperature soundings may be expected to arise from the use of a numerical

forecast as a first guess for the temperature retrieval (McMillin et al, 1973)

and/or from the effects of large-scale cloud patterns on the radiance measure-

ments.
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2. The Experiment

Figure 1 shows the basic design of the experiment. Twelve observations are

arrayed in a rectangular grid of horizontal spacing h. Suppose an interpolated

value of the meteorological variable is desired at the central point X. (This

point might be a grid point for a numerical prediction model, for instance.)

The statistically most reliable way of doing this is by optimum interpolation,

an application of linear regression theory to spatial interpolation of data.

Suppose temperature is the variable being analyzed. Following Gandin

(1963), let

T= T + t , (1)
A%

where T is the observed value of the temperature at a given location, T is some. "guess" value--provided by a forecast or climatology--of the temperature at the
O~~~~~~~~~

location, and t is the deviation of the observed temperature from the guess

value. This may be re-expressed as

T = T + (t + e) , (2)

where t is the "true" temperature deviation at the location and c is the

observational error.

Then the "analyzed" value Ta of the temperature field at an arbitrary

location is given by a weighted linear combination of the deviational temperatures

of the neighboring observations:

^ ,~ n n
Ta = Ta + i citi = Ta + ci(t + ei) (3)

la a I 1 (3fJ1

where Ta is the guess value at the analysis location, the ci are the weights to

be assigned to the deviational temperature observations ti, and n is the numberO
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of observations used in the analysis. In the example of Figure 1, n is 12

if all of the observations are used in the analysis for the central point.

In general, the right-hand side of (3) will not give the true value Ta

of the temperature at the analysis point, Ta will differ from Ta by an amount

called the analysis error E. It is generally not possible to eliminate this

source of error exactly, no matter how the weights ci are chosen, but we can

require that the statistical mean-square error of equation (3),

n
E2 = (Ta - Ta)2 = [Ta - Ta Ci(ti + Ei)] 2 (4)

i=1 

be a minimum for a large ensemble of interpolations and use this requirement

to determine the weights. The result is a set of linear equations,

n

(ti + . i)(tj + j)cj = ta( + + i)c i=1,2 ....n (5)

where ta E Ta Ta,

which may be solved for the weights ci provided the statistical covariances

of (5) are known or approximated.

For radiosonde temperatures, whose errors may safely be assumed to be

random and mutually independent, the set of equations (5) simplifies to

n 2 c= t.(6)i C i titjj + i = tati, i=2...n

Here ei2 is simply the error variance of the ith observation. This is

essentially the expression used for determining the weights in Alaka and

Elvandert's numerical experiment.
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For satellite-derived temperatures with spatially correlated errors,

tic j does not vanish when i ¢ j; therefore the set of equations (5) becomes

in this case

n

jl(titj + iej)c j = tati , i=l,2,...n (7)

Equation (7) is strictly correct only if the observational errors of the

measurement system are not correlated with the true values of temperature.

In an unpublished study, we have shown that such correlations do exist for

satellite-derived temperatures--as they will for any conservative observing

system which tends to underestimate extremes; however the variances

(tiej, etc.) are probably small compared to tic j .

It is convenient for computational purposes to normalize equations (7)

by dividing by the deviational variance t 2 . Equations (7) then take the

form
n

jl(Pij + Pij a0i aej)cj = 1ai' i=l,2, .. n, (8)

where

P ij (9a)
t 2
a

is the spatial correlation of the ith and jth temperature deviations,

P .. = _i -j (9b)
(el2 Ej2)2

is the spatial correlation of the observational errors, and

ai (ei2 ta 2) i (9C)

is the;.normalized standard deviation of observational error. It should be

noted that the normalizing factor ta2 is just the error variance of the
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"guess" temperature at the analysis point, and that the vij are in fact the

spatial correlations of the error in the guess temperature field.

In the numerical experiment based on Figure 1, the initial guess is assumed

to be provided by a 12-hour forecast. Spatial correlations of forecast errors

have not been determined for the NMC prediction models; however, such corre-

lations have been published by Bengtsson and Gustavsson (1971) for 6-, 12-,

and 24-hr forecasts of the 500 mb geopotential height using a quasi-geostrophic

model. Their spatial correlations are approximately independent of location

or directional orientation; that is, they are approximately homogeneous and

isotropic in character. Thus, the forecast error correlation is a function

only of separation distance-s between the ith and jth points. Bengtsson and

Gustavsson's experimentally determined curve for 12-hour forecast error

correlations as a function of s is displayed in Figure 2. This curve is well

approximated by the analytic function

() e-k s2 (10)

where k, = 1.56 x 10-6km- 2. We will assume that (10) with the same value of

k~ applies to the spatial correlation of temperature forecast errors as well.

A reliable determination of the spatial correlation of satellite errors

hasinot yet been made. Preliminary calculations based upon comparisons between

temperature cross-sections constructed from radiosonde and from regression-

derived soundings show spatial correlations of temperature differences that

are comparable to correlations in Figure 2 but that fall off somewhat more

quickly with increasing separation distance. With this in mind, we decided to

O
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"model" Pi with the functional form

2
P ij = e-kps (11)

assigning two different values to kp: kp = kp, kp = 4 kp. The latter value

gives a spatial correlation curve (11) which agrees more closely with the

radiosonde-satellite temperature comparisons, decreasing from 1 to 0.37 (l/e)

in about 400 km (compare with Figure 2). A third series of calculations was

made with kp =10(Pi = 0 when i # j) to compare results from the first two

experiments with those for uncorrelated data.

Once the weights ci are determined, the mean square analysis error is

given by

n
E2= ta2 1 i Vai ci]. (12)

Thus, the mean square analysis error is a fraction of the error variance of

the 12-hr forecast. Although the observational error variance and the spatial

correlations do not appear explicitly in this expression, their influence

enters through the weights ci determined by solving equations (8).

The effect of observational density on the resulting analysis error was

simulated by varying the observational spacing h in Figure 1 from 100 to 1600 km.

One might argue that, when h is small, additional observations beyond the 12

shown in Figure 1 should be included in order to correctly simulate increasing

density. However, a trial run with h = 100 km and 20 additional observations

extending the grid of Figure 1 resulted in very little difference in the

analysis error, as the outer observations received virtually no weight in the

analysis. Besides, any practical real-time analysis method must limit predictors

to a relatively small number which is less than 12 in existing optimum interpo-

lation analysis schemes.
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For the limit h = 0 (all observations coincide), the mean square analysis

error may be expressed as an explicit function of p and a¢:

a-2[l + (n-l)p]

E' = a (13)
n + ae 2 [1l + (n-l)] (13)

Here p denotes the mean value of the inter-observational error correlation,

and it is assumed that all observations are of the same type, hence

ai = aj E. When p = 0, (13) reduces to

2

(E2/ta2) a¢ (14a)
h=O,p=o n + a 200

an error expression appropriate to radiosonde data.

On the other hand, if observational errors are spatially correlated

O according to (11), then p - 1 as h - 0 and

Cr2
~~~~~~-- aC

(E2/ta 2)h=0,O 1 1 + 2 (14b)

the form appropriate for satellite observations. It is evident that the

former decreases without limit as n becomes larger, whereas the latter reaches

a limiting value which does not depend on the number of observations.

3. Results

The set of equations (8) with n = 12 was solved numerically for the weights

ci using the iterative method of conjugate gradients (Beckman, 1960). It was

assumed that all 12 observations are of the same type and hence have the same

statistical error level. The solutions were obtained for normalized

observational errors a of 0, 0.25, 0.50, and 1.00. (The normalized observational

error is the ratio of the standard deviation of the observational error to that

o
of the forecast error.) The correlation coefficients 4ij and Pi; were determined
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from the geometry of Figure 1 and from (10) and (11). In (10), k was assigned

the value 1.56 x 106km' 2. In (11), k was assigned the values k, 4 kp, and a.

The observational spacing h varied from 100 to 1600 km.

Once the weights ci were obtained for a particular set of conditions, the

normalized analysis error

' a (E2/ta2)½

was obtained from (12). The results for °a as a function of hare plotted in

Figure 3 for ae = .25, Figure 4 for oa = .50, and Figure 5 for ac = 1.00. The

limiting values of aa for h = 0 were obtained from (14a,b). In each of the

figures, the dotted curve for ac = 0 (perfect observations) is shown for

comparison. The other three curves are for the three values of k that are
p

assumed. The solid curve for kp = X is appropriate for conventional data with
p

random, independent errors, whereas the dashed curves apply to data with

spatially correlated errors such as is assumed for satellite data.

The dotted curve indicates that portion of the analysis error which results

from spatial interpolation of the observations to the analysis point; it is

seen to be of negligible importance when h is less than about 400 km. For

closely spaced observations, then, nearly all of the analysis error is a

result of the observational errors. For widely spaced observations, on the

other hand, the analysis error is primarily a result of the spatial interpolation.

The figures clearly indicate that the analysis error is less for independent

observations (kp = 0) than for observations with spatially correlated errors.

Of these, the case with the higher degree of correlation (k = kp) has the

larger analysis error.p For both correlated cases, howeverPthe analysis error
larger analysis error. For both correlated cases, however, the Analysis error
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is almost constant for all values of h less than 500 km. (The increase in

aa,as h approaches zeroto the value given by (14b) in the k = 4 k case is

a consequence of assuming perfect correlation of observational errors in the

limit h = 0.) These results suggest that there is little information to be

gained from having satellite observations spaced closer than about 500 km.

This spacing corresponds to a value of the field correlation i of about 0.5

its maximum value (Figure 2).;

In Figures 6, 7, and 8, the normalized analysis error aa is shown as a
.~~~~~~~~~~~~

function of both the normalized observational error a. and the observational

spacing h for kp = A, 4 k. and k1 respectively. Where the isopleths of 0a

are approximately vertical, the analysis error is primarily dependent on the

spacing of observations. Where the isopleths are approximately horizontal,

analysis error is a function of the errors in observation and cannot be

reduced by increasing the density of observations. The figures show clearly

that. for both cases with spatially correlated errors, there is no increase

in analysis accuracy associated with an increase in observation density to a

spacing that is less than about 500 km. For values of h less than 200 km

(Figure 6) or 300 km (Figure 7), analysis errors are at least twice as large

as the corresponding errors for the uncorrelated case.

The weights ci obtained by solving (8) are of secondary interest here. In

a real analysis situation, the analyzed value is given by (3) once the weights

have been determined. In this experiment, the observed values ti have been

left unspecified. Because of the symmetry of the observational array (Figure 1),

the four inner observations all receive the same weight, as do the eight outer
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ones. Generally, the inner observations receive the bulk of the weight, the

outer ones comparatively little. When the observational error level a is

high or when h is large, the weights ci tend to decrease in magnitude,

effectively giving greater importance to the guess value Ta in the final

analysis.

4. Summary and Conclusions

A simple numerical experiment has been performed which extends the study

of Alaka and Elvander (1972a, 1972b) to include the effects of spatially

correlated errors. Results indicate that this spatial error correlation

reduces the information content of Point observations compared to that for

data with random errors. They suggest that increasing the density of

observations beyond a certain threshold (a spacing of about 500 km in the

experiment) will yield little or no improvement in analyses produced from

satellite soundings. This statement assumes that the sounding errors are

spatially correlated on a scale that approaches the scale-of the baroclinic

waves. Although the assumption appears reasonable and has been used in

simulation studies (Baumhefner and Julian, 1972), such correlations have not

yet been measured. The problem is made difficult by the fact that operational

satellite soundings are produced only over the oceans where it is impossible

to define a "true" temperature or height field from radiosonde data.

It shouldbe emphasized that our conclusions apply only to the case of direct

analysis of temperature or height data. Errors in the analysis of gradient

quantities, such as thermal wind fields from satellite temperatures, are likely

to be lower for spatially correlated than for random observational errors.

am
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Captions for Figures

Fig. 1 Array of 12 observations for the numerical analysis experiment.

Small circles are observation locations and h is the spacing

between them. The analysis point is indicated by X. (Same as

Figure 1, Alaka and Elvander, 1972b.)

Fig. *2 Spatial correlation of 12-hour forecast errors of 500 mb geo-

potential height as a function of separation distance s. (After

Bengtsson and Gustavsson, 1971.)

Fig. 3 Normalized standard deviation of analysis error °a as a function

of observational spacing h for a = 0 and for three cases where

ae = .25. The curve kp = o applies to uncorrelated observational

errors.

Fig. 4 Same as Fig. 3, but for a. = 0 and .50.

Fig. 5 Same as Fig. 3, but for a = 0 and 1.00.

Fig. 6 Contours of normalized standard deviation of analysis error aa as

a function of normalized standard deviation of observational error

a and observational spacing h for the case kp = .

Fig. 7 Same as Fig. 6, but for the case kp = 4 k.

Fig. 8 Same as Fig. 6, but for the case kP = k.
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